暇つぶしに見て 乗法の交換法則 その3 ようやく乗法の交換法則です。 乗法の交換法則 数学的帰納法が成立することを証明します。 a×b=b×a⇔a×s(b)=s(b)×a a×s(b)(前提)a×b+a(乗法定義)a×b+(a×0)+a(乗法定義)a×b+(a×1)(乗法定義)... 2024.01.14 暇つぶしに見て
暇つぶしに見て 乗法の分配法則その2 下の記事の続き。 x(y+z)⇔xy+xyは証明できたので(y+z)x⇔yx+zxを証明します。 (x+y)×z=xz+yz 数学的帰納法の起点を作ります。 z=0の場合 (x+y)×0(前提)0(乗法定義) x×0+y×0(前提)0+0(... 2024.01.14 暇つぶしに見て
暇つぶしに見て 乗法の分配法則 乗法の交換法則を証明していたはずが気がつくと分配法則を証明していました。何を言っているのか自分も分かりませんが、気がついたら証明されていました。 分配法則は下の法則x(y+z)=xy+xz 分配法則の証明 数学的帰納法を用いますので、連鎖反... 2024.01.14 暇つぶしに見て
未分類 1との乗法 昨日の交換法則には推論規則を満たさない欠点があったので、そこを修正するために試行錯誤していきます。 今回はそこを修正すべく別の手段を考えてみます。 1と任意の自然数の乗法についての定理を導きます。 a×1=1×a=a が定義から導けるのか、... 2024.01.09 未分類
暇つぶしに見て 乗法の交換法則その2 乗法の交換法則 すべての自然数 a に対して a × 0 = 0すべての自然数 a, b に対して a × suc(b) = (a × b) + aWikipedia 0×a=a×0 任意のaに0をかけると、aの位置にかかわらず0となること... 2024.01.08 暇つぶしに見て
暇つぶしに見て 乗法の交換法則その1 乗法の交換法則を我流で証明します。その前段階としてa×0=0×aが真である証明。 乗法の交換法則の証明 すべての自然数 a に対して a × 0 = 0すべての自然数 a, b に対して a × suc(b) = (a × b) + aWi... 2024.01.08 暇つぶしに見て
暇つぶしに見て 奇数が無限にある証明 我流数学やっていきます。今回も数学的帰納法の練習。奇数が無限個あることを証明します。 奇数が無限個ある証明 2n-1+1+1(前提)2n+2-1(加法)2(n+1)-1(分配法則)2k-1(代入)2n-1+1+1→2k-1(→導入) nは自... 2024.01.07 暇つぶしに見て
暇つぶしに見て 自然数の偶数が無限に在ることの証明の雰囲気 数学的帰納法の雰囲気を味わいますり 自然数の乗法すべての自然数 a に対して a × 0 = 0すべての自然数 a, b に対して a × suc(b) = (a × b) + a自然数の加法すべての自然数 a に対して a × 0 = 0... 2023.11.22 暇つぶしに見て
暇つぶしに見て 数学的帰納法の雰囲気 気がついたら数学的帰納法について考えていました。どうしてそこに行き着いたのかは覚えていません。 順序関係から人の認識について思いを巡らせて「原因→結果の認識の規則の延長が順序で…」となったのは覚えてます。 つまり、例えば自転車を認識する時。... 2023.11.20 暇つぶしに見て
暇つぶしに見て 自然数の0×x=0の証明 x×0=0は定義通り。 0×x=0 証明 数学的帰納法を用います。 x=0の場合は定義通り。1.0×02.0…(1) x=1の場合1.0×1(仮定)2.(0×0)+0(定義)3.0+0(1)より4.0…(2) x=2の場合1.0+2(仮定)... 2023.08.26 暇つぶしに見て
暇つぶしに見て 自然数の加法の定義から交換法則を導く 結合法則を導く証明の次は交換法則。 交換法則はa*b = b*aが満たされる性質のことです。例えば加法と乗法は1+2 = 2+1 = 31*2 = 2*1 = 2で演算の順番を入れ替えても結果は変化しません。 結合法則の時もそうでしたが、交... 2022.12.23 暇つぶしに見て