自然演繹

股関節おじさんの勉強部屋

我流負数定義の修正

前回に定義した負数の乗法は自然数の乗法の定義でいけるんじゃないか、と閃いたので試してみます。あとはマイナス×マイナスに関する乗法も定義しました。 a×-(s(0))(前提)a×s(0)×-1(定義)((a×0)+a)×-...
股関節おじさんの勉強部屋

我流除法と分数の定義

我流除法の定義が人の認識通りに運用できるかテストします。 我流除法テスト 我流定義a/1=aa÷b=a/b(a×c)÷(b×c)=a/b 以下テスト。 10÷5(前提)((2×0)+2+2+...
股関節おじさんの勉強部屋

乗法の分配法則

乗法の交換法則を証明していたはずが気がつくと分配法則を証明していました。何を言っているのか自分も分かりませんが、気がついたら証明されていました。 分配法則は下の法則x(y+z)=xy+xz 分配法則の証明 数学的帰納法を...
スポンサーリンク
股関節おじさんの勉強部屋

乗法の交換法則その1

乗法の交換法則を我流で証明します。その前段階としてa×0=0×aが真である証明。 乗法の交換法則の証明 すべての自然数 a に対して a × 0 = 0すべての自然数 a, b に対して a × suc(b) = (a × b...
股関節おじさんの勉強部屋

奇数が無限にある証明

我流数学やっていきます。今回も数学的帰納法の練習。奇数が無限個あることを証明します。 奇数が無限個ある証明 2n-1+1+1(前提)2n+2-1(加法)2(n+1)-1(分配法則)2k-1(代入)2n-1+1+1→...
股関節おじさんの勉強部屋

自然数の偶数が無限に在ることの証明の雰囲気

数学的帰納法の雰囲気を味わいますり 自然数の乗法すべての自然数 a に対して a × 0 = 0すべての自然数 a, b に対して a × suc(b) = (a × b) + a自然数の加法すべての自然数 a に対して a × 0...
股関節おじさんの勉強部屋

一般化の雰囲気

∃除去の話の続き。∃除去、導入の推論規則を読んだだけだと、どうしてそれが必要なのかが感じられない。なんとなく、人が法則を一般化させる認識が根底にはあるんだろうな、とは感じられますが、しっくりはこない。 一般化の雰囲気 参考に...
股関節おじさんの勉強部屋

全称除去の定義と練習問題

述語論理における全称記号∀を取り除く推論規則を見ていきます。 別名を普遍例化と呼ぶようです。 全称除去(普遍例化) 定義 例:「全ての犬は動物である。ポチは犬である。従って、ポチは動物である」ある項 a について公...
股関節おじさんの勉強部屋

全称導入の練習問題

やりながら全称導入の理解を深めます。 全称導入 ∀x∀yP(x, y) ⊢ ∀y∀xP(x, y) 1.∀x∀yP(x, y)(前提)2.∀yP(x,y)(∀除去)3.P(x,y)(∀除去)4.∀xP(y)(∀導入)5....
股関節おじさんの勉強部屋

全称導入と仮定の解消

∀導入定義の人の認識を結びつけるために藻掻きます。 全称導入と仮定の解消 定義 これが全称導入の定義 A(c)⊢∀x∈X:A(x)WIIS A(c)の論理式を満たすようなcは集合Xの任意の要素xに対しても成立...
股関節おじさんの勉強部屋

自然数の0+x=xの証明

x+0=xは定義されていますが、逆バージョン0+x=xは証明定義されていませんのて証明していきます。 0+x=x 証明 1.0+0(仮定)1.0(加法定義)3.0+0⇔0…14.0+1(仮定)5.S(0+0)(加法定義)...
股関節おじさんの勉強部屋

1×0=0と1×1=1の証明

自然数の乗法 定義 自然数の加法は再帰的に、以下のように定義できる。すべての自然数 a に対して、a + 0 = aすべての自然数 a, b に対して、a + suc(b) = suc(a + b)1 := suc(0) と定...
タイトルとURLをコピーしました