暇つぶしに見て 後件否定と前件肯定の証明 後件肯定と前件肯定と後件否定と前件否定 前件肯定の証明 1.(A→B)∧A(仮定)2.(A→B),A(∧除去)3.B(→除去)4.((A→B)∧A)→B(→導入) 後件否定の証明 1.A→B,¬B(仮定)2.A(仮定)3.B(→除去)4.B... 2023.07.23 暇つぶしに見て
暇つぶしに見て 矛盾と恒真式の定理の証明 ∨,∧と⊥,Tの関係。 の矛盾と恒真式の定理 恒偽式(矛盾)と恒真式の定理の証明。 A⇔A∨⊥ ∨と⊥の関係。 1.(仮定)2.A(仮定)3.A(同語反復)4.A→A(→導入)5.(仮定)6.A(矛盾除去)7.⊥→A(→導入)8.A(∨除去... 2023.07.22 暇つぶしに見て
未分類 夢と主観と客観とフロー 戦う上で避けては通れない壁。二人の自分の調和。最難関だがここを突破すれば道が開かれる。 主観と客観の調和 長濱説では意識は主観と客観に分けられます。俗に言う本能や潜在意識が主観、理性や顕在意識が客観。この二つが少しづつ調和し始めてから僕は大... 2023.07.21 未分類
暇つぶしに見て 双対とド・モルガンの法則 双対という概念に遭遇しました。これについて考えていきます。 双対とド・モルガンの法則 定義 【双対】命題を論理式として表したとき、論理和 ∨ と論理積 ∧ とをすべて入れ替え、全称記号 ∀ と存在記号 ∃ とをすべて入れ替えたものをもとの論... 2023.07.20 暇つぶしに見て
暇つぶしに見て (A∧B)→C⇔A→(B→C)の証明 これまでに証明した命題論理の定理を用いた証明を行います。 (A∧B)→C⇔A→(B→C) 証明 1.(仮定)2.¬(A∧B)∨C(→言い換え)3.¬A∨¬B∨C(ド・モルガンの法則)4.¬A∨(¬B∨C)(結合法則)5.A→(¬B∨C)(→... 2023.07.19 暇つぶしに見て
メンタル 向上心と依存心 依存心からの脱却 「あれもこれも」と俗に言われているような、ボクサーやアスリートとして正しい行為に忙しく取り組むのは、用意周到だから?それとも自分の行為と信念以外の何かに期待しなければ立っていられないから? 僕が大切にしている価値観「対応力... 2023.07.18 メンタル
暇つぶしに見て 吸収律の証明 A⇔A∨(A∧B)A⇔A∧(A∨B)この定理が吸収律です、 吸収律 定義 吸収法則(きゅうしゅうほうそく、英: Absorption law)は、代数学において1対の二項演算を結びつける恒等式である。吸収律あるいは簡約律とも。任意の二項演算... 2023.07.17 暇つぶしに見て
暇つぶしに見て B∨¬A⇔A→Bの証明 B∨¬A⇔A→B B∨¬A→(A→B)の証明から 証明 1.(仮定)2.(仮定)3.(B∨¬A)∧A(∧導入)4.B(選言三段論法)5.A→B(→導入)6.(B)∨¬A→(A→B)(→導入) 選言的三段論法は定理です。詳しい証明はリンクから... 2023.07.16 暇つぶしに見て
暇つぶしに見て 対偶の証明 対偶について。対偶はA→B⇔¬B→¬A 対偶の自然演繹 定義 【対偶】命題「AならばB」の対偶は「BでないならばAでない」である。 論理記号として「ならば (⇒\Rightarrow )」および否定 (¬\neg ) を用いると、命題$\d... 2023.07.15 暇つぶしに見て
暇つぶしに見て 選言三段論法 命題論理定理シリーズやっていきます。今回は選言的三段論法。 (A∨B)∧¬A→B(¬A∨B )∧A→A 選言的三段論法 定義 選言三段論法(せんげんさんだんろんぽう、英: Disjunctive syllogism)とは、論理学において、「... 2023.07.13 暇つぶしに見て
暇つぶしに見て ¬の分配法則と二重否定の除去と導入 論理和と論理積の結合、分配法則を学んでいえふと、「ド・モルガンの法則は否定の分配法則だ」と頭に浮かびました。 否定演算には分配法則が成り立つことをド・モルガンの法則は言っているのですね。 ¬の分配法則と二重否定の除去と導入 ド・モルガンの法... 2023.07.11 暇つぶしに見て
メンタル 未来のことを心配しても仕方がない 今なすべきことをなせ 【為すべきことを為せ】『バガヴァッド・ギーター』に 収められています。 自分の感情や行為の結果にとらわれず、為すべきことを為せということです。 未来はどうなるか分からない 未来は不確実で何が起こるのか、上手くいくのか苦... 2023.07.10 メンタル