暇つぶしに見て ド・モルガンの法則の自然演繹 ド・モルガンの法則 自然演繹て、少しも"自然"じゃないよな、と。 形式主義vs直観主義。これで本気で喧嘩できる情熱すごい。 数学の哲学において、直観主義(ちょっかんしゅぎ、英: Intuitionism)とは、数学の基礎を数学者の直観におく... 2025.05.11 暇つぶしに見て
暇つぶしに見て 無理数と有理数の性質 有理数×無理数=無理数 有理数の加法と乗法の閉性より 有理数×有理数=有理数 有理数+有理数=有理数 となります。 有理数×無理数=有理数 だと仮定します。 無理数=有理数/有理数(乗法逆元) 以上は有理数の演算が閉じている要請を満たしてい... 2025.04.29 暇つぶしに見て
暇つぶしに見て 有理数は循環少数 有理数は循環小数 見出しの証明。 有理数(ゆうりすう、英: rational number)とは、整数の比(英: ratio)として表すことができる実数のことである。分母・分子ともに整数の分数(分母≠0)として表すことができる実数との説明も... 2025.04.28 暇つぶしに見て
暇つぶしに見て 乗法と乗法逆元の性質 積の大小関係 乗法の大小関係の性質。 既に導いたx<y⇒0<y-x=y+(-x)①の加法の性質を用います。 0<x≤y≤z(仮定) 0≤x(z-y)(乗法律と①) 0≤xz-xy(分配法則) xy≤xz-xy+xy(加法律) xy≤xz(単... 2025.04.24 暇つぶしに見て
暇つぶしに見て マイナス×プラス=マイナス マイナス×プラス=マイナス 0≤x,y⇒-x,-y≤0①と0x=0②との定理を用います。 -1・-1=1の証明。 -1+1=0(加法逆元) -1+-(-1)=0(加法逆元) -(-1)=1(加法一意性)① -a・-b(仮定) -1・-1・a... 2025.04.23 暇つぶしに見て
暇つぶしに見て 加法律から導かれる性質 実数の加法律からどんな性質が導けるのかを考えます。 加法律は演算の後で順序の性質が保たれることの要請。 0≤x⇒-x≤0 0≤x(仮定) (-x)+0≤(-x)+x(加法律) -x≤0(単位元と逆元) 0≤x⇒-x≤0(含意) xが0以上な... 2025.04.22 暇つぶしに見て
暇つぶしに見て 任意の数の平方は0以上 x≠0⇒0<x² プラス×プラス=プラスは乗法律はにより定義済み。 マイナス×マイナス=プラスの証明の続き。0以外の平方は0より大きくなる証明。 0より大きいか0の場合は定義されています(乗法律)。 従って0より小さい平方の証明だけをやりま... 2025.04.20 暇つぶしに見て
暇つぶしに見て マイナス×マイナス=プラス 定義から証明 1+-1=-0(加法逆元) -1+-(-1)=0(加法逆元) -(-1)=1(加法一意性) 加法逆元の逆元は元の元,-1・-1=-(-1)=1① 次は任意の実数におけるマイナス×マイナス。 ∀a,b∈ℝ(-a・-b)(仮定) ... 2025.04.17 暇つぶしに見て
暇つぶしに見て 大小関係 その二 大小関係 大小関係の定義。 広義大小関係 ここで P は集合であり、「≤」を P 上で定義された二項関係とする。 反射律:P の任意の元 a に対し、a ≤ a が成り立つ。 推移律:P の任意の元 a, b, c に対し、a ≤ b かつ... 2025.03.21 暇つぶしに見て
暇つぶしに見て 狭義大小関係 引用WIIS 定義 10反射律、11反対称律、12推移律、13完備律を備えののが大小関係。 狭義大小関係は、上に加えて同値関係が成り立たないもの。 x<y⇔x≤y∧x≠y 定理 x<y⇒¬(y<x) の証明。 感覚的には自明なんだけど一応。... 2025.03.18 暇つぶしに見て
よもやま話 大規模言語「私は誰だ。ここは何処だ。」 ヒト「大規模言語って人みたいだな...。」 ヒト「はて、私が大規模言語ではない保証はどこだ?画面の外から誰かに見られているのではないか?記憶が存在の証明?その記憶が作られた可能性は?」 ヒトor大規模言語「私を『私である』と証明してくれるも... 2025.02.17 よもやま話
暇つぶしに見て 同型写像と群 同型写像と群 f(e)=f(e・e)=f(e)・f(e)(群と同型写像) f(e)・f(e)=f(e)(推移律) ある要素に作用させると、もとの要素になる形(規則)は単位元。同型写像は単位元を保存する。 f(e)=f(e・e')=f(e)・... 2025.02.16 暇つぶしに見て