aⁿがどこまでも大きくなる証明

数学とか

$1<a⇒a^{n}<a^{n+1}$
1より大きなaのべき乗は指数(自然数)を大きくすれば、どこまでも大きくなります。

ほぼ同じ意味ですが、それに上限が無いことを証明します。

べき乗の指数法則 $a^{m}≠a^{n}→m≠n$
べき乗 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x,(∗∗)xn+1:=xⁿ×x(n≥1).x0 を定義する場合には、関係式 (∗∗) が n ...
デデキント切断と上限性質
差集合 B から A を引いた差、差集合あるいは B における A の(相対)補集合と呼ぶ。記号を用いて書けば、 x∈B∖A⟺x∈B∧x∉A, ウィキペディア 上界 ∃a∈ℝ,∀∈A:x≤a WIIS 実数の公理は デデキントの公理 上限性...

ベルヌーイの法則

証明
数学的帰納法を用います。
$r>-1,n=1$
$(1+r)^{1}≧1+r・1$(乗法>保存則)
$(1+r)=1+r$(同値関係)…①

数学的帰納法仮定と乗法>保存則より
$(1+r)^{n}>(1+nr)⇒(1+r)^{n}・(1+r)>(1+nr)(1+r)$…②

また、②の右辺を展開すると
$(1+nr)(1+r)$(仮定)
$1+nr+r+nr^{2}$(分配法則)
$1+r(n+1)+nr^{2}$(分配法則)
仮定より$nr^{2}>0$なので
$1+r(n+1)+nr^{2}>1+r(n+1)$(加法律)
$(1+r)^{n}・(1+r)>(1+nr)(1+r)>1+r(n+1)⇒(1+r)^{n+1}>1+(n+1)r$(推移関係)

①と合わせると数学的帰納法によりベルヌーイの法則が成り立ちます。

任意の整数 r ≥ 0 と全ての実数 x ≥ −1 に対し、次が成立する。

$\displaystyle (1+x)^{r}\geq 1+rx\!$

指数 r が偶数の場合、この不等式は全ての実数 x に対して成り立つ。

さらに厳しい条件のものとしては、任意の整数 r ≥ 2 と全ての実数 x ≥ −1 (ただし、x ≠ 0)に対し、次が成立する

$\displaystyle (1+x)^{r}>1+rx\!$

ベルヌーイの不等式は他の不等式を証明する際に重要な場面で用いられることがある。これは以下に示すように、数学的帰納法を使って証明することができる。

ウィキペディア

実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。

(∗)x¹:=x

(∗∗)xn+1:=xⁿ×x(n≥1).x0

を定義する場合には、関係式 (∗∗) が n = 0 でも成立するように定義を拡張するのが自然である。

ウィキペディア

上記のベルヌーイの法則を用いて冒頭の命題を証明します。

$(1+r)^{n}≧1+nr$(ベルヌーイの法則)
アルキメデスの性質より、任意のM,rに対してnr>Mを満たす自然数nが存在します。
また、前提と加法律より、$1+rn>rn$が成り立ちます。
よって
$(1+r)^{n}≧1+nr>nr>∀M∈ℝ$(アルキメデスの性質とベルヌーイの不等式)
$(1+r)^{n}>∀M$(推移関係)

冒頭の命題が証明できました。$a^{n}$には上限がありません。

アルキメデスの性質
アルキメデスの性質 順序群Gにおける正の元x, y について、xがyに対して無限小である(あるいは、yがxに対して無限大である)とは、任意の自然数 n について nx がyより小さいこと、つまり以下の不等式が成立することである。 x+⋯+x...

対数を用いた証明

n=1の場合は上で示した通り。

以下n>1の場合。
$M=\log_{a}m$(仮定)

$n・\log_{a}a^{a}>\log_{a}m$(アルキメデスの性質)
$\log_{a}(a^{a})^{n}>\log_{a}m$(対数法則)
$a^{n}>M$(対数定義)

アルキメデスの性質が成立するなら、任意のMより大きな$a^{n}$は構成できます。

対数の方が単純ですね。対数が開発された意味をすこしだけ体感。

数学的帰納法の雰囲気その三
数学的帰納法 例題)1²+2²+3²+...x²=x(x+1)(2x+1)/6※1 x=1(仮定) (1・2・3)/6=1(代入) 1²=1(代入) 1=1(同値関係) 数学的帰納法の第一段階完了。 次は第二段階。 ※1がx任意のxにn成り...

SNSで共有してね

問い合わせ

トレーニングの依頼などはこちらから

パーソナルトレーニングやグループトレーニング、セミナーや取材、YouTubeコラボなどのご依頼はこちらからよろしくお願いします。

長濱陸Tシャツ

お求めはこちらから

スポンサーリンク
Die Hard – ダイ・ハード
この記事を書いた人

第41第東洋太平洋(OPBF)ウェルター級王者
元WBC世界同級34位
元WBO-AP同級3位
元角海老宝石ジム所属

股関節おじさんをフォローする
スポンサーリンク
スポンサーリンク
股関節おじさんをフォローする

コメント

タイトルとURLをコピーしました