自然演繹

暇つぶしに見て

B∨¬A⇔A→Bの証明

B∨¬A⇔A→B B∨¬A→(A→B)の証明から 証明 1.(仮定)2.(仮定)3.(B∨¬A)∧A(∧導入)4.B(選言三段論法)5.A→B(→導入)6.(B)∨¬A→(A→B)(→導入) 選言的三段論法は定理です。詳しい証明はリンクから...
暇つぶしに見て

対偶の証明

対偶について。対偶はA→B⇔¬B→¬A 対偶の自然演繹 定義 【対偶】命題「AならばB」の対偶は「BでないならばAでない」である。 論理記号として「ならば (⇒\Rightarrow )」および否定 (¬\neg ) を用いると、命題$\d...
暇つぶしに見て

論理和と論理積の分配法則 その3

(A∨B)∧(A∨C)⇔A∨(B∧C)は同値変形できたので、次はコレ。(A∧B)∨(A∧C)⇔A∧(B∨C) 論理和と論理積の分配法則 証明 1.,(仮定1,仮定2)2.A,B(∧除去)3.B∨C(∨導入)4.A∧(B∨C)(∧導入)5.A...
暇つぶしに見て

論理積と論理和の結合法則

結合法則の演繹 命題論理の結合法則を自然演繹の推論規則から導いてみます。結合法則は加法なら (A+B)+C=A+(B+C) と同値変形できる法則のことです。 論理積の結合法則の証明 1.A∧(B∧C)(前提)2.A,B∧C(除去)3.A,B...
暇つぶしに見て

論理積と論理和の分配法則 その1

今回はA∨(B∧C)⇔(A∨B)∧(A∨C)の分配法則です。 論理積と論理和の分配法則 前回と同じ戦略です。 証明 1.(仮定)2.A∨B(∨導入)4.A∨C(∨導入)5.(A∨B)∧(A∨C)(∧導入)6.A→(A∨B)∧(A∨C)(→導...
暇つぶしに見て

否定の導入

別の記事でもやりましたが、復習もかねて簡潔に否定の推論規則だけ復習します。 否定の導入⇔背理法Pであると仮定し矛盾(恒偽式)が導けた場合、¬Pが演繹できます。 ある人が長濱陸であるとする命題Pを仮定して、如何なる解釈においてもその人の身長、...
暇つぶしに見て

閉じた仮定と開いた仮定

命題論理と自然演繹の仮定について復習も兼ねて現時点での僕の概観をまとめていきます。 数学や論理学は「仮定」や「これだけは正しいと認めてしまおう」と歴史的に合意されたある公理に「これだけは正しいと認めてしまおう」と合意された変形(推論)の規則...
暇つぶしに見て

論理和と論理積の交換法則

A∨B=B∨A,A∧B=B∧Aの自然演繹。 前提A,Bから出発して仮定の導入、解消でやれないか挑戦してみます。 論理和の交換法則 1.A∨B(前提)2.A(仮定1)3.B∨A(∨導入)4.A→B∨A(→導入.仮定1解消)5.B(仮定)6.B...
暇つぶしに見て

現象には意味があって欲しいという人の願望

自然演繹の現時点の僕の疑問とそれに対する解釈を書き出して頭を整理します。 「仮定」について 推論て何 論理学の推論の成立に関する現時点の僕なりの文脈を無造作に与えると以下のような感じ。 現象を観察する↓前提(事実)を抽出する↓「前提が真なら...