外積

数学とか

ベクトルの外積に思いを馳せる

質問 外積は座標に跨がるような作用を起こします。まるで直進の力が軸で回転に変換されることを表現しているように見えます。この印象は論理的に妥当? 詳しい文脈は下の記事見てね。 $x$ 成分を決定するのは $y$ と $z$。 $y$ 成分を決...
数学とか

外積のたすき掛けって何やねん

3次元のベクトルを考える。 外積は二つのベクトルの内積が0になる、すなわち二つのベクトルと垂直に交わる(=意味が交わらない)ベクトルを作り出す操作。 $⟨\boldsymbol{x},\boldsymbol{z}⟩=0$...① $⟨\bo...
数学とか

ベクトルの外積って何やねん

外積 外積 3次元実数空間 $\mathbb{R}^3$ において、2つのベクトル $\vec{a} = (a_1, a_2, a_3)$ と $\vec{b} = (b_1, b_2, b_3)$ が与えられたとき、その外積 $\vec{...
技術

ボクシングのパラダイムシフト「二軸」

長岡とのミット打ちで感じた違和感。推論によってたどり着いた「二軸打者と一軸打者の世界観の違い」という仮説。この世界観の違いがボクシングシステムを根本から覆すだろうという予感。長岡のお陰でよりボクシングが鮮明になり、僕のボクシングを見るフィル...