暇つぶしに見て 形式的に定理を導く練習 数学の定義を記号として形式的に扱ったみる練習。 公理をペアノの公理という。 0 ∈ ℕ 任意の n ∈ ℕ について S(n) ∈ ℕ 任意の n ∈ ℕ について S(n) ≠ 0 任意の n, m ∈ ℕ について n ≠ m ならば ... 2024.08.08 暇つぶしに見て
暇つぶしに見て 負数について考える 減法の我流定義を作っていると、どうしても負数って概念が必要になりました。 0-a をなんとかしないと気持ちが悪い。解消しようとすると負数を出現させないといけません。 当然ながら別に負数である必要はなく、それを禁止して別の僕だけの数学世界を作... 2023.12.20 暇つぶしに見て
暇つぶしに見て 自然数の0×x=0の証明 x×0=0は定義通り。 0×x=0 証明 数学的帰納法を用います。 x=0の場合は定義通り。1.0×02.0…(1) x=1の場合1.0×1(仮定)2.(0×0)+0(定義)3.0+0(1)より4.0…(2) x=2の場合1.0+2(仮定)... 2023.08.26 暇つぶしに見て
暇つぶしに見て 自然数の0+x=xの証明 x+0=xは定義されていますが、逆バージョン0+x=xは証明定義されていませんのて証明していきます。 0+x=x 証明 1.0+0(仮定)1.0(加法定義)3.0+0⇔0…14.0+1(仮定)5.S(0+0)(加法定義)6.S(0)(1より... 2023.08.24 暇つぶしに見て
暇つぶしに見て 1×0=0と1×1=1の証明 自然数の乗法 定義 自然数の加法は再帰的に、以下のように定義できる。すべての自然数 a に対して、a + 0 = aすべての自然数 a, b に対して、a + suc(b) = suc(a + b)1 := suc(0) と定義するならば、... 2023.08.22 暇つぶしに見て
暇つぶしに見て 1+1=2の証明 1+1 =2の証明を定義から導きます。 自然数の加法 定義1.自然数 1 が存在する。2.任意の自然数 a にはその後者 (successor) の自然数 suc(a) が存在する(suc(a) は a + 1 の "意味")。3.異なる自... 2023.08.06 暇つぶしに見て
暇つぶしに見て 自然数の定義と人の認識 人の認識を延長したものが含意、さらにその含意を延長し集合を含む概念にしたのが写像、関数。この文脈から自然数の定義にどんな物語が与えられるのかを見ていきます。人の認識って文脈から数学を理解しようって試みであくまでも長濱説、我流です。 写像と含... 2023.05.15 暇つぶしに見て
暇つぶしに見て 自然数の加法の定義から交換法則を導く 結合法則を導く証明の次は交換法則。 交換法則はa*b = b*aが満たされる性質のことです。例えば加法と乗法は1+2 = 2+1 = 31*2 = 2*1 = 2で演算の順番を入れ替えても結果は変化しません。 結合法則の時もそうでしたが、交... 2022.12.23 暇つぶしに見て
暇つぶしに見て 自然数の加法の定義から結合法則を導く 順序集合(関係)の定義を学んでいるのですが、反射律やら推移律やら反対称律やら。「相等」関係をやった時にも出てきた概念です。「意味は分かる、だけどその心は?」って感じです。 というわけでネットを徘徊。少しづつ「もしかして『順序』の概念は自然数... 2022.12.16 暇つぶしに見て
暇つぶしに見て 自然数の演算の閉性 自然数が群であることを証明します。 ここまでの道筋としてはこんな感じ。「数について学ぼう→n次元数空間を知る→n次元数空間はベクトル空間の概念が適用される→ベクトル空間の線形変換には行列の概念が必要→行列積は連立方程式の応用→演算て何→集合... 2022.05.20 暇つぶしに見て