暇つぶしに見て 我流負数の交換法則とか いつかの我流定義。-a=-s(a)+1今朝、ふとこれは定義ではなく定理だなと。 -s(a)+1(前提)-(s(a)+(-1))(負数定義)-(a+1+(-1))(負数定義)-(a)(負数定義)-a(負数定義)s(a)+1=-a 乗法で負数を... 2024.03.10 暇つぶしに見て
暇つぶしに見て 乗法の交換法則 その3 ようやく乗法の交換法則です。 乗法の交換法則 数学的帰納法が成立することを証明します。 a×b=b×a⇔a×s(b)=s(b)×a a×s(b)(前提)a×b+a(乗法定義)a×b+(a×0)+a(乗法定義)a×b+(a×1)(乗法定義)... 2024.01.14 暇つぶしに見て
未分類 1との乗法 昨日の交換法則には推論規則を満たさない欠点があったので、そこを修正するために試行錯誤していきます。 今回はそこを修正すべく別の手段を考えてみます。 1と任意の自然数の乗法についての定理を導きます。 a×1=1×a=a が定義から導けるのか、... 2024.01.09 未分類
暇つぶしに見て 乗法の交換法則その2 乗法の交換法則 すべての自然数 a に対して a × 0 = 0すべての自然数 a, b に対して a × suc(b) = (a × b) + aWikipedia 0×a=a×0 任意のaに0をかけると、aの位置にかかわらず0となること... 2024.01.08 暇つぶしに見て
暇つぶしに見て 乗法の交換法則その1 乗法の交換法則を我流で証明します。その前段階としてa×0=0×aが真である証明。 乗法の交換法則の証明 すべての自然数 a に対して a × 0 = 0すべての自然数 a, b に対して a × suc(b) = (a × b) + aWi... 2024.01.08 暇つぶしに見て
暇つぶしに見て 論理積と論理和の分配法則 その1 今回はA∨(B∧C)⇔(A∨B)∧(A∨C)の分配法則です。 論理積と論理和の分配法則 前回と同じ戦略です。 証明 1.(仮定)2.A∨B(∨導入)4.A∨C(∨導入)5.(A∨B)∧(A∨C)(∧導入)6.A→(A∨B)∧(A∨C)(→導... 2023.06.16 暇つぶしに見て
暇つぶしに見て 論理和と論理積の交換法則 A∨B=B∨A,A∧B=B∧Aの自然演繹。 前提A,Bから出発して仮定の導入、解消でやれないか挑戦してみます。 論理和の交換法則 1.A∨B(前提)2.A(仮定1)3.B∨A(∨導入)4.A→B∨A(→導入.仮定1解消)5.B(仮定)6.B... 2023.06.08 暇つぶしに見て
暇つぶしに見て ド・モルガンの法則の自然演繹 ド・モルガンの法則 ド・モルガンの法則 A∨B⇔B∨Aを導きたいってこどネットを徘徊していたところ「論理和の交換法則はこの論理展開で行くんじゃない?」とヒントになりそうなものを発見しましたので共有します。 ド・モルガンの法則の自然演繹です。... 2023.06.06 暇つぶしに見て
暇つぶしに見て 自然数の加法の定義から交換法則を導く 結合法則を導く証明の次は交換法則。 交換法則はa*b = b*aが満たされる性質のことです。例えば加法と乗法は1+2 = 2+1 = 31*2 = 2*1 = 2で演算の順番を入れ替えても結果は変化しません。 結合法則の時もそうでしたが、交... 2022.12.23 暇つぶしに見て