暇つぶしに見て

双対とド・モルガンの法則

双対という概念に遭遇しました。これについて考えていきます。 双対とド・モルガンの法則 定義 【双対】命題を論理式として表したとき、論理和 ∨ と論理積 ∧ とをすべて入れ替え、全称記号 ∀ と存在記号 ∃ とをすべて入れ替えたものをもとの論...
暇つぶしに見て

(A∧B)→C⇔A→(B→C)の証明

これまでに証明した命題論理の定理を用いた証明を行います。 (A∧B)→C⇔A→(B→C) 証明 1.(仮定)2.¬(A∧B)∨C(→言い換え)3.¬A∨¬B∨C(ド・モルガンの法則)4.¬A∨(¬B∨C)(結合法則)5.A→(¬B∨C)(→...
メンタル

向上心と依存心

依存心からの脱却 「あれもこれも」と俗に言われているような、ボクサーやアスリートとして正しい行為に忙しく取り組むのは、用意周到だから?それとも自分の行為と信念以外の何かに期待しなければ立っていられないから? 僕が大切にしている価値観「対応力...
スポンサーリンク
暇つぶしに見て

吸収律の証明

A⇔A∨(A∧B)A⇔A∧(A∨B)この定理が吸収律です、 吸収律 定義 吸収法則(きゅうしゅうほうそく、英: Absorption law)は、代数学において1対の二項演算を結びつける恒等式である。吸収律あるいは簡約律とも。任意の二項演算...
暇つぶしに見て

B∨¬A⇔A→Bの証明

B∨¬A⇔A→B B∨¬A→(A→B)の証明から 証明 1.(仮定)2.(仮定)3.(B∨¬A)∧A(∧導入)4.B(選言三段論法)5.A→B(→導入)6.(B)∨¬A→(A→B)(→導入) 選言的三段論法は定理です。詳しい証明はリンクから...
暇つぶしに見て

対偶の証明

対偶について。対偶はA→B⇔¬B→¬A 対偶の自然演繹 定義 【対偶】命題「AならばB」の対偶は「BでないならばAでない」である。 論理記号として「ならば (⇒\Rightarrow )」および否定 (¬\neg ) を用いると、命題$\d...
よもやま話

人類を囚えるマトリックスと長濱式瞑想とフロー体験

最近は試合に向けて瞑想を再開しているのでその話をさせてもらいます。 長濱式瞑想 フローとオカルト 瞑想を再開した理由は角さんのオカルト番組にハマったからです。 大半は眉唾物の与太話の類と感じるのですが、その中にちらほらフロー体験のことではな...
暇つぶしに見て

選言三段論法

命題論理定理シリーズやっていきます。今回は選言的三段論法。 (A∨B)∧¬A→B(¬A∨B )∧A→A 選言的三段論法 定義 選言三段論法(せんげんさんだんろんぽう、英: Disjunctive syllogism)とは、論理学において、「...
暇つぶしに見て

¬の分配法則と二重否定の除去と導入

論理和と論理積の結合、分配法則を学んでいえふと、「ド・モルガンの法則は否定の分配法則だ」と頭に浮かびました。 否定演算には分配法則が成り立つことをド・モルガンの法則は言っているのですね。 ¬の分配法則と二重否定の除去と導入 ド・モルガンの法...
メンタル

未来のことを心配しても仕方がない

今なすべきことをなせ 【為すべきことを為せ】『バガヴァッド・ギーター』に 収められています。 自分の感情や行為の結果にとらわれず、為すべきことを為せということです。 未来はどうなるか分からない 未来は不確実で何が起こるのか、上手くいくのか苦...
よもやま話

アルファ・オスと悟りとノブレス・オブリージュ

アルファ・オス不在の巨大な群れの暴走 アルファ・オスとベータ・オス 日本語の記事が無かったので英語で。 【α male and β male】Alpha maleandbeta male, or simply putalphaandbeta...
暇つぶしに見て

恒等式と恒偽式の定義と定理

恒等式と恒偽式(矛盾)の同値変形の定理について学びます。 恒等式と恒偽式 恒等式 【定義】ここでは古典命題論理における恒真式の定義を述べる。$\mathrm {Val}$ を命題変数の全体とする。$f:{\mathrm {Val}}\to ...