暇つぶしに見て (準)同型写像と群の性質 群演算の一意性 X:群 X∈x,x⁻¹,y x・x⁻¹=x・y x⁻¹・x・x⁻¹=x⁻¹・x・y e・x⁻¹=e・y x⁻¹=y xの逆元と異なる要素yを群から取ってきてxに作用させた場合に結果が同じ。 群の同型写像の集合Mを定義。その中... 2025.02.20 暇つぶしに見て
暇つぶしに見て 同型写像と群 同型写像と群 f(e)=f(e・e)=f(e)・f(e)(群と同型写像) f(e)・f(e)=f(e)(推移律) ある要素に作用させると、もとの要素になる形(規則)は単位元。同型写像は単位元を保存する。 f(e)=f(e・e')=f(e)・... 2025.02.16 暇つぶしに見て
暇つぶしに見て 同型写像って何やねん 続き。 同型写像 2つの数学的対象が同型 (isomorphic) であるとは、それらの間に同型写像が存在することをいう。自己同型写像は始域と終域が同じ同型写像である。同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使... 2025.02.11 暇つぶしに見て