排中律

暇つぶしに見て

無矛盾律と排中律の自然演繹

無矛盾律 無矛盾律(むむじゅんりつ、英: Law of noncontradiction)は、論理学の法則であり、アリストテレスによれば「ある事物について同じ観点でかつ同時に、それを肯定しつつ否定することはできない」こと。Wikipedia...
暇つぶしに見て

排中律の証明

排中律 定義 排中律(はいちゅうりつ、英: Law of excluded middle、仏: Principe du tiers exclu)とは、論理学において、任意の命題 P に対し"P ∨ ¬P"(P であるか、または P でない)...
暇つぶしに見て

矛盾と恒真式の定理の証明

∨,∧と⊥,Tの関係。 の矛盾と恒真式の定理 恒偽式(矛盾)と恒真式の定理の証明。 A⇔A∨⊥ ∨と⊥の関係。 1.(仮定)2.A(仮定)3.A(同語反復)4.A→A(→導入)5.(仮定)6.A(矛盾除去)7.⊥→A(→導入)8.A(∨除去...
暇つぶしに見て

¬の分配法則と二重否定の除去と導入

論理和と論理積の結合、分配法則を学んでいえふと、「ド・モルガンの法則は否定の分配法則だ」と頭に浮かびました。 否定演算には分配法則が成り立つことをド・モルガンの法則は言っているのですね。 ¬の分配法則と二重否定の除去と導入 ド・モルガンの法...
暇つぶしに見て

否定の導入

別の記事でもやりましたが、復習もかねて簡潔に否定の推論規則だけ復習します。 否定の導入⇔背理法Pであると仮定し矛盾(恒偽式)が導けた場合、¬Pが演繹できます。 ある人が長濱陸であるとする命題Pを仮定して、如何なる解釈においてもその人の身長、...
暇つぶしに見て

認識と論理包含と混乱

論理学は人の認識の一般化です。人が開発したのだから当たり前ではありますが、見落としてしまいがち。 人の認識を土台として集合や写像という概念は開発された、という視点に立てば数学の見え方が変わってきます。 複雑に見える概念であっても、集合や写像...
暇つぶしに見て

素数が無限にある証明を背理法で

論理的に正しいと定義される推論の形式の続き「背理法」を見ていきます。 背理法 定義 【背理法】とは、ある命題Pを証明したいときに、Pが偽であることを仮定して、そこから矛盾を導くことによって、Pが偽であるという仮定が誤り、つまりPは真であると...