べき乗

数学とか

べき乗の分配法則 $a^{xy}=(a^{x})^{y}$

指数法則 べき乗 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x,(∗∗)xn+1:=xⁿ×x(n≥1).x0 を定義する場合には、関係式 (∗∗)...
数学とか

指数の加法法則 xⁿ・x¹=xⁿ⁺¹

べき乗の性質 べき乗 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x,(∗∗)xn+1:=xⁿ×x(n≥1).x0 を定義する場合には、関係式 (∗...
数学とか

べき乗の大小関係 1
べき乗 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x,(∗∗)xn+1:=xⁿ×x(n≥1).x0 を定義する場合には、関係式 (∗∗) が n ...

数学とか

指数の法則 底を共有する指数の大小関係

指数の性質 指数の性質を考えます。 (仮定) ⊥(正と負の乗法) ¬(x<0∧0<y→0<xy)(背理法) ¬(¬(x<0∧0<y)∨0<x・y)(→言い換え) ¬(0<x∨y<0)→x・y<0(ド・モルガンの法則) x<0∧0<y→x・y...
数学とか

数学的帰納法の雰囲気その二

数学的帰納法 無理数って何?→アルキメデスの性質って何?→無限大や無限小って何?→無限はどう対処するの?(今ここ) 「無限大」というのは、「どの実数よりも大きな数」という形で捉えられていると思われるが、特定の数を表しているわけではなく、「い...