暇つぶしに見て 頭の体操六 有理数+無理数=無理数 見出しの証明。 任意の有理数をx、無理数をy、zを有理数、x+y=z、有理数+無理数=有理数、と仮定し、その矛盾を導き背理法により有理数+無理数=無理数を証明します。 x+y=z(前提) y=z-x(移項) 仮定より... 2024.11.29 暇つぶしに見て
暇つぶしに見て 頭の体操五 有理数は循環小数 見出しの証明。 有理数(ゆうりすう、英: rational number)とは、整数の比(英: ratio)として表すことができる実数のことである。分母・分子ともに整数の分数(分母≠0)として表すことができる実数との説明も... 2024.11.28 暇つぶしに見て
暇つぶしに見て 頭の体操四 可付番集合 可算集合とは N と濃度が等しい集合のことである。すなわち、集合 S が可算であるとは、自然数全体の集合 N との間に全単射が存在することをいう ウィキペディア 自然数との全単射性が認められる集合が可付番。 偶数は可付番 偶数2... 2024.11.18 暇つぶしに見て
暇つぶしに見て 頭の体操 その二 A,B,C(仮定) A→A∨(B∨C)(∨導入→導入) B→A∨(B∨C)(∨導入→導入) C→A∨(B∨C)(∨導入→導入) A∨B(仮定) A∨(B∨C)(∨除去) A∨B→A∨(B∨C)(→導入) (A∨B)∨C(仮定) A∨(B∨C... 2024.10.11 暇つぶしに見て
暇つぶしに見て 頭の体操 集合Aの部分集合とはすなわちべき集合とその濃度。 二つの要素を持つ集合のべき集合の要素数は A=aがある B=bがある と定義すると要素の組み合わせは四通り (A,¬B)(¬A,B)(¬A,¬B)(A,B) べき集合の任意の要素xについては... 2024.10.07 暇つぶしに見て