暇つぶしに見て ヒルベルトの公理に我流解釈を与える WIISの公理主義的実数論を読み進めていると、再び公理主義とは、との疑問が頭をもたげてきました。それは直観としては、仏教の縁起に似た、認識(≒数学or論理)の規則をより抽象的に捉えようとする試みだと解釈しています。 ウィキペディアの英語版に... 2024.12.25 暇つぶしに見て
暇つぶしに見て 頭の体操九 実数乗法の0 二行目と四行目は実数から0(加法単位元)を引いた差集合として演算が定義されています。何故だろうかと。 二行目は、かけると元の数になる乗法単位元の存在の要請です。 0×∀x∈ℝ=0 0は何倍しても0であってほしい。 この要請は0... 2024.12.08 暇つぶしに見て
暇つぶしに見て 頭の体操八 一意性(いちいせい、英語: uniqueness)とは数学分野において、注目している数学的対象が「存在するならばただ一つだけである」或いは「ただ一つだけ存在している(つまり「存在して、かつ、存在するならばただ一つだけである」の意)」という性... 2024.12.06 暇つぶしに見て
暇つぶしに見て 頭の体操七 逆元の逆元 -(-x)は逆元の逆元という意味。裏の裏は表、の証明。 公理主義実数論の公理から。 ∀x,∃-x∈ℝ:x+(-x)=0 任意の元xを選ぶとその逆元は必ず存在します。 (-x)+(-(-x))=0(R3) -(-x)+(-x)=0... 2024.12.02 暇つぶしに見て
暇つぶしに見て 頭の体操六 有理数+無理数=無理数 見出しの証明。 任意の有理数をx、無理数をy、zを有理数、x+y=z、有理数+無理数=有理数、と仮定し、その矛盾を導き背理法により有理数+無理数=無理数を証明します。 x+y=z(前提) y=z-x(移項) 仮定より... 2024.11.29 暇つぶしに見て
暇つぶしに見て 頭の体操五 有理数は循環小数 見出しの証明。 有理数(ゆうりすう、英: rational number)とは、整数の比(英: ratio)として表すことができる実数のことである。分母・分子ともに整数の分数(分母≠0)として表すことができる実数との説明も... 2024.11.28 暇つぶしに見て
暇つぶしに見て 整数 参考書WIIS 実数や整数の濃度を比較して遊ぼうとすると、どうしてもその定義を知らなきゃならんことがあります。というわけでとりあえず現時点の理解をまとめます。 可算無限 「自然数の濃度と偶数の濃度は同じ」について。自然数とその真部分集合であ... 2024.11.25 暇つぶしに見て
暇つぶしに見て 群 濃度の件で、そう言えば代数的数なるものがあったなと。果たしてその濃度はどれほどか証明しよう、と思い立ったのですが、『そもそも「代数的数」を知らん』と気が付きました。 深掘りしたら「群」という概念と遭遇。 情報の大部分が捨像されたような定義だ... 2024.11.21 暇つぶしに見て
暇つぶしに見て 頭の体操四 可付番集合 可算集合とは N と濃度が等しい集合のことである。すなわち、集合 S が可算であるとは、自然数全体の集合 N との間に全単射が存在することをいう ウィキペディア 自然数との全単射性が認められる集合が可付番。 偶数は可付番 偶数2... 2024.11.18 暇つぶしに見て
暇つぶしに見て 頭の体操 その三 対偶 A={(x,y)∈ℝ²|y³+yx²≤x³+xy²} B={(x,y)∈ℝ²|y≤x} ⊂集合を論理の包含関係→⇒と解釈します。 y³+yx²≤x³+xy²(仮定) y(y²+x²)≤x(x²+y²)(分配法則) y(x²+y²)≤x... 2024.11.11 暇つぶしに見て
暇つぶしに見て 二次元の双対 集合の双対 上の我流で「双対関係」に文脈を与える試みの続き。 双対(そうつい、dual, duality)とは、互いに対になっている2つの対象の間の関係である。2つの対象がある意味で互いに「裏返し」の関係にあるというようなニュアンスがある(... 2024.10.31 暇つぶしに見て
暇つぶしに見て 双対と概念の創造 双対の文脈を読解してみる 再び双対と遭遇。こいつは強敵。 そもそも論として「双対」とはなんぞや、と。 字面は理解できます。が、「その心は?」が理解できません。 何故数学界はコイツを仲間に加えたのか、という疑問です。そこは厳密に存在意義を評価... 2024.10.28 暇つぶしに見て