公理主義

暇つぶしに見て

乗法と乗法逆元の性質

積の大小関係 乗法の大小関係の性質。 既に導いたx<y⇒0<y-x=y+(-x)①の加法の性質を用います。 0<x≤y≤z(仮定) 0≤x(z-y)(乗法律と①) 0≤xz-xy(分配法則) xy≤xz-xy+xy(加法律) xy≤xz(単...
暇つぶしに見て

マイナス×プラス=マイナス

マイナス×プラス=マイナス 0≤x,y⇒-x,-y≤0①と0x=0②との定理を用います。 -1・-1=1の証明。 -1+1=0(加法逆元) -1+-(-1)=0(加法逆元) -(-1)=1(加法一意性)① -a・-b(仮定) -1・-1・a...
暇つぶしに見て

加法律から導かれる性質

実数の加法律からどんな性質が導けるのかを考えます。 加法律は演算の後で順序の性質が保たれることの要請。 0≤x⇒-x≤0 0≤x(仮定) (-x)+0≤(-x)+x(加法律) -x≤0(単位元と逆元) 0≤x⇒-x≤0(含意) xが0以上な...
スポンサーリンク
暇つぶしに見て

任意の数の平方は0以上

x≠0⇒0<x² プラス×プラス=プラスは乗法律はにより定義済み。 マイナス×マイナス=プラスの証明の続き。0以外の平方は0より大きくなる証明。 0より大きいか0の場合は定義されています(乗法律)。 従って0より小さい平方の証明だけをやりま...
暇つぶしに見て

マイナス×マイナス=プラス

定義から証明 1+-1=-0(加法逆元) -1+-(-1)=0(加法逆元) -(-1)=1(加法一意性) 加法逆元の逆元は元の元,-1・-1=-(-1)=1① 次は任意の実数におけるマイナス×マイナス。 ∀a,b∈ℝ(-a・-b)(仮定) ...
暇つぶしに見て

大小関係 その二

大小関係 大小関係の定義。 広義大小関係 ここで P は集合であり、「≤」を P 上で定義された二項関係とする。 反射律:P の任意の元 a に対し、a ≤ a が成り立つ。 推移律:P の任意の元 a, b, c に対し、a ≤ b かつ...
暇つぶしに見て

狭義大小関係

引用WIIS 定義 10反射律、11反対称律、12推移律、13完備律を備えののが大小関係。 狭義大小関係は、上に加えて同値関係が成り立たないもの。 x<y⇔x≤y∧x≠y 定理 x<y⇒¬(y<x) の証明。 感覚的には自明なんだけど一応。...
暇つぶしに見て

割り算 その五

乗法の0元以外で0を作れないのか、と。すなわち、0以外の元同士を作用させてx・y=0の結論を得られないのかと。 背理法を用います。 x≠0∧y≠0⇔x・y=0 x≠0∧y≠0⇒x・y=0(前提) x(仮定) x・1(乗法単位元) x・y・y...
暇つぶしに見て

割り算 その四

公理主義実数論には"0を除いた"実数に乗法単位元と逆元が定義されています。 それは何故か。 この話は以前触れたような気もしますが、割り算について考えるがてら、もう一度その理由について考えてみます。 除法その三で、0の乗法は任意の数に対して0...
暇つぶしに見て

割り算 その三

逆元 x/yの逆元は乗法一意性により (x/y)・(x/y)⁻¹=1(乗法逆元) (x・1/y)・(y・1/x)=1(除法定義) (x/y)⁻¹=(y・1/x)=y/x(乗法一意性&除法定義) x/yの逆元 (x/y)⁻¹=y/x です。 ...
暇つぶしに見て

わり算 その二

任意の実数に対して0以外の逆元の乗法を除法と定める。 x・y⁻¹=z が除法。yの逆元をかけること。 x・1=z・y yかけると逆元は消えて乗法単位元(何もしない要素)が現れる関係。乗法においてyを相殺するのがy⁻¹。 また上の式は x÷y...
暇つぶしに見て

(準)同型写像と群の性質

群演算の一意性 X:群 X∈x,x⁻¹,y x・x⁻¹=x・y x⁻¹・x・x⁻¹=x⁻¹・x・y e・x⁻¹=e・y x⁻¹=y xの逆元と異なる要素yを群から取ってきてxに作用させた場合に結果が同じ。 群の同型写像の集合Mを定義。その中...