暇つぶしに見て べき乗の性質その五 べき乗 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x,(∗∗)xn+1:=xⁿ×x(n≥1).x0 を定義する場合には、関係式 (∗∗) が n ... 2025.07.24 暇つぶしに見て
暇つぶしに見て べき乗の性質 その四 べき乗の性質 べき乗 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x,(∗∗)xn+1:=xⁿ×x(n≥1).x0 を定義する場合には、関係式 (∗... 2025.07.23 暇つぶしに見て
暇つぶしに見て べき乗の性質 その三 べき乗 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x,(∗∗)xn+1:=xⁿ×x(n≥1).x0 を定義する場合には、関係式 (∗∗) が n ... 2025.07.17 暇つぶしに見て
暇つぶしに見て 指数の法則 複利の計算式 複利計算 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x,(∗∗)xn+1:=xⁿ×x(n≥1).x0 を定義する場合には、関係式 (∗∗) が n... 2025.07.13 暇つぶしに見て
暇つぶしに見て 指数の法則 指数の性質 指数の性質を考えます。 (仮定) (乗法律) ⊥ ¬(x<0∧0<y⇒0<x・y)(背理法) 0<x∨y<0⇒x・y<0(ド・モルガンの法則) 0<x∧0<y⇒0<x・y→0<x∨y<0⇒x・y<0(→導入)① 乗法律は「正と負... 2025.07.12 暇つぶしに見て