暇つぶしに見て 含意から三段論法を演繹 三段論法と仮定 証明 下のような論理式「AならばBかつBならばC、ならばAならばCである」(A→B∧B→C)→(A→C)「AならばBかつBならばCかつCであるならば、AならばCである」(A→B∧B→C)∧A→C 大枠の含意(A→B∧B→C)... 2023.08.16 暇つぶしに見て
暇つぶしに見て 双対とド・モルガンの法則 双対という概念に遭遇しました。これについて考えていきます。 双対とド・モルガンの法則 定義 【双対】命題を論理式として表したとき、論理和 ∨ と論理積 ∧ とをすべて入れ替え、全称記号 ∀ と存在記号 ∃ とをすべて入れ替えたものをもとの論... 2023.07.20 暇つぶしに見て
暇つぶしに見て (A∧B)→C⇔A→(B→C)の証明 これまでに証明した命題論理の定理を用いた証明を行います。 (A∧B)→C⇔A→(B→C) 証明 1.(仮定)2.¬(A∧B)∨C(→言い換え)3.¬A∨¬B∨C(ド・モルガンの法則)4.¬A∨(¬B∨C)(結合法則)5.A→(¬B∨C)(→... 2023.07.19 暇つぶしに見て
暇つぶしに見て B∨¬A⇔A→Bの証明 B∨¬A⇔A→B B∨¬A→(A→B)の証明から 証明 1.(仮定)2.(仮定)3.(B∨¬A)∧A(∧導入)4.B(選言三段論法)5.A→B(→導入)6.(B)∨¬A→(A→B)(→導入) 選言的三段論法は定理です。詳しい証明はリンクから... 2023.07.16 暇つぶしに見て
暇つぶしに見て ド・モルガンの法則の自然演繹 ド・モルガンの法則 ド・モルガンの法則 A∨B⇔B∨Aを導きたいってこどネットを徘徊していたところ「論理和の交換法則はこの論理展開で行くんじゃない?」とヒントになりそうなものを発見しましたので共有します。 ド・モルガンの法則の自然演繹です。... 2023.06.06 暇つぶしに見て
暇つぶしに見て 論理包含の法則その2 トートロジーと三段論法 下の記事の続き。Wikipediaにある他の法則も導いていきます。 論理包含の法則 同語反復 まずWikipediaの一発目。 $P \rightarrow P$(同語反復)Wikipedia 【トートロジー(恒等式)】(こうしんしき、トー... 2023.01.14 暇つぶしに見て
暇つぶしに見て 論理包含の法則からドモルガンの法則を導く 下のリンクの続き。論理包含の定義から導き出せる性質(法則)を考えていきます。 論理包含の法則 論理包含の定義 前回学んだ定義の復習。集合を一般化したような概念で論理的に結論を導く方法として定義され、現時点では上手く行っているようです。集合論... 2023.01.11 暇つぶしに見て