数学とか 極限の収束 $\displaystyle \lim_{ n \to \infty } \dfrac{1}{n²}=0$ 証明 0<x<y(仮定) 0<x(y-x)(乗法律) 0<xy-x²(分配法則) x²<xy(加法逆元) 1<x<y→x²<xy(→... 2025.09.09 数学とか
数学とか アルキメデスの性質と全順序 任意の実数x,yには必ず順序関係が定義されている。 x≦y∨y≦x(完備律) また、加法は≦関係を保存する。 0<x<y,0<z⇒x+z<y+z(加法律) すなわち、任意の大きな実数より大きな実数は常に創れる(実数は無限大に頭を押さえつける... 2025.07.03 数学とか
数学とか アルキメデスの性質その四 順序群Gにおける正の元x, y について、xがyに対して無限小である(あるいは、yがxに対して無限大である)とは、任意の自然数 n について nx がyより小さいこと、つまり以下の不等式が成立することである。 x+⋯+x⏟n<y. ウィキペ... 2025.07.01 数学とか
数学とか アルキメデスの性質その三 順序群Gにおける正の元x, y について、xがyに対して無限小である(あるいは、yがxに対して無限大である)とは、任意の自然数 n について nx がyより小さいこと、つまり以下の不等式が成立することである。 x+⋯+x⏟n<y. ウィキペ... 2025.06.24 数学とか
数学とか アルキメデスの性質 その二 数の大きさ ∀y,∀x∈ℝ,∀n∈ℕy<nx 自然数は帰納的集合なので上に有界ではない、かつ実数は加法律によりどこまでも大きくできます。 ∀x,y>0,∃n∈ℕ:y<nx 自然数に上界がないこと、実数に下界(無限小)と上界(無限大)がないこ... 2025.06.12 数学とか
数学とか アルキメデスの性質 アルキメデスの性質 順序群Gにおける正の元x, y について、xがyに対して無限小である(あるいは、yがxに対して無限大である)とは、任意の自然数 n について nx がyより小さいこと、つまり以下の不等式が成立することである。 x+⋯+x... 2025.06.08 数学とか