集合論

暇つぶしに見て

集合と認識と自然演繹

我流集合論 人の認識の規則を記号化したものが論理、それを拡張したのが集合、それをさらに拡張したのが関数、という過程の下なら、下記の関係が成り立つはずなので、それを証明します。(A⊂B)⇔(x∈A⇒x∈B)⇔(P(x)⇒Q(x)) 集合 A ...
暇つぶしに見て

自然数の定義と人の認識

人の認識を延長したものが含意、さらにその含意を延長し集合を含む概念にしたのが写像、関数。この文脈から自然数の定義にどんな物語が与えられるのかを見ていきます。人の認識って文脈から数学を理解しようって試みであくまでも長濱説、我流です。 写像と含...
暇つぶしに見て

論理和除去と導入

後回しにしてた論理和の推論規則を学んでいきます。 論理和の導入と除去 ∨(論理和)導入 Wikipediaの説明が分かりやすいので引用します。 もし「P」という命題が真であれば、「PまたはQ」という命題もまた真である、という推論規則である。...
暇つぶしに見て

帰納と演繹と推論の妥当性

前回は「そういえば当たり前のように数学の証明の手続きを受け入れてしまっているけど、推論の確かさの定義ってどうなってんの」ってことで一通り調べて、一応の納得できました。 その時はそれで終わったのですが、ふと車の運転中に「『前提が全て真なら結論...
暇つぶしに見て

集合の濃度と全単射

とりあえず1か月振りなのでこれまでの流れを復習します。 ここまでの流れ。集合について学んでいると同値関係って言葉が頻出したので、かなり脱線して「同値」って何ぞやってことをWikipediaの記事を潜って学んでいました。同値類は反射律、推移律...
暇つぶしに見て

数学の「関係」の定義

集合論を進めていると「同値」って言葉が頻繁に出てきます。a = b のことです。義務教育で習いましたよね。日常生活でも何となく利用しているありふれた概念なので、深くその定義について考えてはいなかったのですが、ふと「そういえば『同値』って何....
暇つぶしに見て

素朴集合論の集合の定義

集合と元の素朴な定義について学んでいきます。公理的集合論では厳密に集合を定義するようですが、慌てずに素朴集合論の定義から学びます。 集合 集合の定義 けっこうあっさりしていて「集合とはものの集まりである」です。整数、自然数、有理数などが集合...
暇つぶしに見て

素朴集合論とラッセルのパラドックス

数学を学んでいる時間が今は一番楽しくて、息抜きとして心が疲れた時にだけやっていいって決めてはいるのですが、一度始めると5時間とかはあっという間で。学生の頃に目覚めてくれればね。よかったのに。 ボクシングを考えるのが疎かになっています。頭の片...
暇つぶしに見て

直積の定義と例

直和の定義の次は直積を見ていきます。忘れないようにメモしておきますが、これは整数の定義を理解したいというのが発端となっています。 直積 概要 数学において、集合のデカルト積(デカルト­せき、英:Cartesian product)または直積...
暇つぶしに見て

直和の定義と例

自然数に続いて整数の定義しようと思ったら、そのためには同値類という集合の分類を定義する必要があり、さらにそれを定義するためには直和と直積という定義を学ばなきゃならんようなんで、やっていきます。 直積、直和という概念は物理学にも応用されている...
暇つぶしに見て

素人が数学に挑戦 …写像?

ベクトル空間の理解のために写像って概念が必要なのでざっと学習します。写像は集合論に出てくる概念で、集合と集合の対応関係を表しています。 写像 定義 とりあえずいつも通りWikipediaの定義を読んでみます。 写像集合Aの各元に対してそれぞ...