実数

暇つぶしに見て

割り算 その五

乗法の0元以外で0を作れないのか、と。すなわち、0以外の元同士を作用させてx・y=0の結論を得られないのかと。 背理法を用います。 x≠0∧y≠0⇔x・y=0 x≠0∧y≠0⇒x・y=0(前提) x(仮定) x・1(乗法単位元) x・y・y...
暇つぶしに見て

割り算 その四

公理主義実数論には"0を除いた"実数に乗法単位元と逆元が定義されています。 それは何故か。 この話は以前触れたような気もしますが、割り算について考えるがてら、もう一度その理由について考えてみます。 除法その三で、0の乗法は任意の数に対して0...
暇つぶしに見て

割り算 その三

逆元 x/yの逆元は乗法一意性により (x/y)・(x/y)⁻¹=1(乗法逆元) (x・1/y)・(y・1/x)=1(除法定義) (x/y)⁻¹=(y・1/x)=y/x(乗法一意性&除法定義) x/yの逆元 (x/y)⁻¹=y/x です。 ...
スポンサーリンク
暇つぶしに見て

わり算 その二

任意の実数に対して0以外の逆元の乗法を除法と定める。 x・y⁻¹=z が除法。yの逆元をかけること。 x・1=z・y yかけると逆元は消えて乗法単位元(何もしない要素)が現れる関係。乗法においてyを相殺するのがy⁻¹。 また上の式は x÷y...
暇つぶしに見て

割り算

公理主義実数論の立場から除法≒割り算を考えます。 除法 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x, (∗∗)xn+1:=xⁿ×x(n≥1) ....
暇つぶしに見て

0×a=0

任意の実数xに0をかけると0になる証明。どこがでやったような気がするので重複した記事かも。 ただ、なんとなく頭の中で完結させただけな気もしますので、確認もかねて。 0・a⇔a・0(乗法交換律) 0・a(前提) (0+0)a(加法零元) 0・...
暇つぶしに見て

稠密性「デデキントカットッッッ!!!」

実数の最大値最小値 A={ℝ∈x|a≤x≤b} maxA=b,minA=a 非負の実数の部分集合の大小関係を集めた順序対の集合をℝ⁺≤とすると ∀x(0,x)∈ℝ⁺≤ 正の実数の任意の元は0以上の関係にあるので、その最小値は minℝ⁻=0...
暇つぶしに見て

頭の体操十二

ド・モルガンの法則 ふと、自然演繹て、少しも"自然"じゃないよな、と感じるようになってきました。頭の中で遊ぶ分には面白いのですが。形式的に考え過ぎることがヒトの自然な思考から精神を引き剥がし、無味乾燥で無意味なことをしていると感じる時があり...
暇つぶしに見て

0⁰=1の証明

0の0乗 0⁰=1 であることは、一応は下の記事で証明しましたが、0=0^(0+1)へ変形する過程がないことにきがつきました。 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定め...
暇つぶしに見て

頭の体操十一

マイナスの分配 -(x+y)=(-x)+ (-y) の証明。加法の一意性を用います。 (-x)+(-y),-(x+y)(前提1,2) -(x+y)+(x+y)=0(前提2加法4,3) (-x)+(-y)+(x+y)=0(前提1加法4,3) ...
暇つぶしに見て

ヒルベルトの公理に我流解釈を与える

WIISの公理主義的実数論を読み進めていると、再び公理主義とは、との疑問が頭をもたげてきました。それは直観としては、仏教の縁起に似た、認識(≒数学or論理)の規則をより抽象的に捉えようとする試みだと解釈しています。 ウィキペディアの英語版に...
暇つぶしに見て

頭の体操十

循環小数ならば有理数 循環小数(じゅんかんしょうすう、英: recurring decimal、repeating decimal)とは、小数点以下のある桁から先で同じ数字の列が無限に繰り返される小数のことである。繰り返される数字の列を循環...