暇つぶしに見て

暇つぶしに見て

有理数の間には無理数がある

無理数は有理数の間にぎっしりと詰まっているようです。 ホントかよと。 散歩中にその証明を閃きました。 任意の有理数の間には無理数が必ず存在することを証明します。 準備 0<x<y⇒0<y-x=y+(-x)① ①は加法律から導出できる加法の性...
暇つぶしに見て

ド・モルガンの法則の自然演繹

ド・モルガンの法則 自然演繹て、少しも"自然"じゃないよな、と。 形式主義vs直観主義。これで本気で喧嘩できる情熱すごい。 数学の哲学において、直観主義(ちょっかんしゅぎ、英: Intuitionism)とは、数学の基礎を数学者の直観におく...
暇つぶしに見て

乗法の自然数の閉性

任意の乗法を自然数へ送る集合が帰納的集合である証明。 A={y∈ℕ,x∈ℝΙx・y∈ℕ}① yを1と仮定すると x・1∈ℕ(乗法単位元) 単位元は任意の自然数を自然数へ送るので、Aは1を含みます。 定義を満たすy=aを選びます。 x ・a∈...
スポンサーリンク
暇つぶしに見て

自然数の加法の閉性

帰納的集合 定義は単純です。 帰納的集合の要請は、1を持ち、かつ1と任意の元の加法が閉じていること。 具体的には実数、正の実数、非負の実数、0を含む自然数、0を含まない自然数、正の整数、正の有理数などですかね。 自然数 公理主義では帰納的集...
暇つぶしに見て

無理数は無限にある

有理数の間には常に無理数がある 有理数+無理数=無理数① a<n⇒a/n>a/n+1>a/n+2...>0② ある無理数aを大きな有理数nで割るとその値は無理数であり、かつ0へ近づく 任意のx<yにおいて、xに小さな無理数aを足すとその値は...
暇つぶしに見て

無理数と有理数の性質

有理数×無理数=無理数 有理数の加法と乗法の閉性より 有理数×有理数=有理数 有理数+有理数=有理数 となります。 有理数×無理数=有理数 だと仮定します。 無理数=有理数/有理数(乗法逆元) 以上は有理数の演算が閉じている要請を満たしてい...
暇つぶしに見て

有理数は循環少数

有理数は循環小数 見出しの証明。 有理数(ゆうりすう、英: rational number)とは、整数の比(英: ratio)として表すことができる実数のことである。分母・分子ともに整数の分数(分母≠0)として表すことができる実数との説明も...
暇つぶしに見て

√2の無理性の証明

無理性の証明 有理数はℤ/ℕで表される数。 偶数は約分できるので、有理数は分母か分子のいずれかが奇数になります※1。 例)2/4=1/2,3/6=1/2 分母分子は互いに素 x²=2となるようなxを求めます。そのような有理数があると仮定する...
暇つぶしに見て

有理数の大小関係

加法の大小関係 デデキント切断の準備をします。 感覚的には「任意の正数xに任意の正数y足した値はxより大きくなる」は自加法律を見れば自明です。ただ、年の為に確認します。 0<1,x(仮定) 0+x<1+x(加法律) x<1+x(単位元) 0...
暇つぶしに見て

乗法と乗法逆元の性質

積の大小関係 乗法の大小関係の性質。 既に導いたx<y⇒0<y-x=y+(-x)①の加法の性質を用います。 0<x≤y≤z(仮定) 0≤x(z-y)(乗法律と①) 0≤xz-xy(分配法則) xy≤xz-xy+xy(加法律) xy≤xz(単...
暇つぶしに見て

マイナス×プラス=マイナス

マイナス×プラス=マイナス 0≤x,y⇒-x,-y≤0①と0x=0②との定理を用います。 -1・-1=1の証明。 -1+1=0(加法逆元) -1+-(-1)=0(加法逆元) -(-1)=1(加法一意性)① -a・-b(仮定) -1・-1・a...
暇つぶしに見て

加法律から導かれる性質

実数の加法律からどんな性質が導けるのかを考えます。 加法律は演算の後で順序の性質が保たれることの要請。 0≤x⇒-x≤0 0≤x(仮定) (-x)+0≤(-x)+x(加法律) -x≤0(単位元と逆元) 0≤x⇒-x≤0(含意) xが0以上な...