暇つぶしに見て 大小関係 その二 大小関係 大小関係の定義。 広義大小関係 ここで P は集合であり、「≤」を P 上で定義された二項関係とする。 反射律:P の任意の元 a に対し、a ≤ a が成り立つ。 推移律:P の任意の元 a, b, c に対し、a ≤ b かつ... 2025.03.21 暇つぶしに見て
暇つぶしに見て 狭義大小関係 引用WIIS 定義 10反射律、11反対称律、12推移律、13完備律を備えののが大小関係。 狭義大小関係は、上に加えて同値関係が成り立たないもの。 x<y⇔x≤y∧x≠y 定理 x<y⇒¬(y<x) の証明。 感覚的には自明なんだけど一応。... 2025.03.18 暇つぶしに見て
暇つぶしに見て 割り算 その五 乗法の0元以外で0を作れないのか、と。すなわち、0以外の元同士を作用させてx・y=0の結論を得られないのかと。 背理法を用います。 x≠0∧y≠0⇔x・y=0 x≠0∧y≠0⇒x・y=0(前提) x(仮定) x・1(乗法単位元) x・y・y... 2025.03.12 暇つぶしに見て
暇つぶしに見て 割り算 その四 公理主義実数論には"0を除いた"実数に乗法単位元と逆元が定義されています。 それは何故か。 この話は以前触れたような気もしますが、割り算について考えるがてら、もう一度その理由について考えてみます。 除法その三で、0の乗法は任意の数に対して0... 2025.03.04 暇つぶしに見て
暇つぶしに見て 割り算 その三 逆元 x/yの逆元は乗法一意性により (x/y)・(x/y)⁻¹=1(乗法逆元) (x・1/y)・(y・1/x)=1(除法定義) (x/y)⁻¹=(y・1/x)=y/x(乗法一意性&除法定義) x/yの逆元 (x/y)⁻¹=y/x です。 ... 2025.02.27 暇つぶしに見て
暇つぶしに見て わり算 その二 任意の実数に対して0以外の逆元の乗法を除法と定める。 x・y⁻¹=z が除法。yの逆元をかけること。 x・1=z・y yかけると逆元は消えて乗法単位元(何もしない要素)が現れる関係。乗法においてyを相殺するのがy⁻¹。 また上の式は x÷y... 2025.02.24 暇つぶしに見て
暇つぶしに見て (準)同型写像と群の性質 群演算の一意性 X:群 X∈x,x⁻¹,y x・x⁻¹=x・y x⁻¹・x・x⁻¹=x⁻¹・x・y e・x⁻¹=e・y x⁻¹=y xの逆元と異なる要素yを群から取ってきてxに作用させた場合に結果が同じ。 群の同型写像の集合Mを定義。その中... 2025.02.20 暇つぶしに見て
暇つぶしに見て 割り算 公理主義実数論の立場から除法≒割り算を考えます。 除法 実数 x の正整数 n 乗は、素朴には、n 個の x を掛け合わせたものである。厳密には、次のように再帰的に定められる。 (∗)x¹:=x, (∗∗)xn+1:=xⁿ×x(n≥1) .... 2025.02.18 暇つぶしに見て
暇つぶしに見て 同型写像と群 同型写像と群 f(e)=f(e・e)=f(e)・f(e)(群と同型写像) f(e)・f(e)=f(e)(推移律) ある要素に作用させると、もとの要素になる形(規則)は単位元。同型写像は単位元を保存する。 f(e)=f(e・e')=f(e)・... 2025.02.16 暇つぶしに見て
暇つぶしに見て 同型写像って何やねん 続き。 同型写像 2つの数学的対象が同型 (isomorphic) であるとは、それらの間に同型写像が存在することをいう。自己同型写像は始域と終域が同じ同型写像である。同型写像の興味は2つの同型な対象は写像を定義するのに使われる性質のみを使... 2025.02.11 暇つぶしに見て
よもやま話 「群」って何がしたいねん 公理主義実数論 集合 G とその上の二項演算 μ: G × G → G の組 (G, μ) が群であるとは、以下の3つの条件を満たすことをいう: (結合法則)任意の G の元 g, h, k に対して、μ(g, μ(h, k)) = μ(μ... 2025.02.10 よもやま話暇つぶしに見て
暇つぶしに見て 0×a=0 任意の実数xに0をかけると0になる証明。どこがでやったような気がするので重複した記事かも。 ただ、なんとなく頭の中で完結させただけな気もしますので、確認もかねて。 0・a⇔a・0(乗法交換律) 0・a(前提) (0+0)a(加法零元) 0・... 2025.01.13 暇つぶしに見て