暇つぶしに見て 無理数は無限にある 有理数の間には常に無理数がある 有理数+無理数=無理数① a<n⇒a/n>a/n+1>a/n+2...>0② ある無理数aを大きな有理数nで割るとその値は無理数であり、かつ0へ近づく 任意のx<yにおいて、xに小さな無理数aを足すとその値は... 2025.05.01 暇つぶしに見て
暇つぶしに見て 無理数と有理数の性質 有理数×無理数=無理数 有理数の加法と乗法の閉性より 有理数×有理数=有理数 有理数+有理数=有理数 となります。 有理数×無理数=有理数 だと仮定します。 無理数=有理数/有理数(乗法逆元) 以上は有理数の演算が閉じている要請を満たしてい... 2025.04.29 暇つぶしに見て
暇つぶしに見て 有理数は循環少数 有理数は循環小数 見出しの証明。 有理数(ゆうりすう、英: rational number)とは、整数の比(英: ratio)として表すことができる実数のことである。分母・分子ともに整数の分数(分母≠0)として表すことができる実数との説明も... 2025.04.28 暇つぶしに見て
暇つぶしに見て 頭の体操四 可付番集合 可算集合とは N と濃度が等しい集合のことである。すなわち、集合 S が可算であるとは、自然数全体の集合 N との間に全単射が存在することをいう ウィキペディア 自然数との全単射性が認められる集合が可付番。 偶数は可付番 偶数2... 2024.11.18 暇つぶしに見て