有理数

数学とか

連分数展開

無理数って何やねんシリーズ。 有理数の連分数展開 連分数で無理数の性質の一端が見られるということなので、その方法を学びます。 準備として計算を練習します。 例題1) $\frac{37}{28}$ 展開 $\frac{37}{28}=1+\...
数学とか

有理数 演算の閉性

有理数の加法の法則 このでは整数を ℕ∨-ℕ∨0 と定義します。 定義より、ℕ⊂ℤであるので整数の加法は閉じています。 有理数の加法の性質を導きます。 (仮定) z₁/n₁・1+z₂/n₂・1(乗法単位元) (z₁/n₁・n₂・n₂⁻¹)+...
数学とか

アルキメデスの性質 その二

数の大きさ ∀y,∀x∈ℝ,∀n∈ℕy<nx 自然数は帰納的集合なので上に有界ではない、かつ実数は加法律によりどこまでも大きくできます。 ∀x,y>0,∃n∈ℕ:y<nx 自然数に上界がないこと、実数に下界(無限小)と上界(無限大)がないこ...
数学とか

無理数は無限にある

有理数の間には常に無理数がある 有理数+無理数=無理数① a<n⇒a/n>a/n+1>a/n+2...>0② ある無理数aを大きな有理数nで割るとその値は無理数であり、かつ0へ近づく 任意のx<yにおいて、xに小さな無理数aを足すとその値は...
数学とか

無理数と有理数の性質

有理数×無理数=無理数 有理数の加法と乗法の閉性より 有理数×有理数=有理数 有理数+有理数=有理数 となります。 有理数×無理数=有理数 だと仮定します。 無理数=有理数/有理数(乗法逆元) 以上は有理数の演算が閉じている要請を満たしてい...
数学とか

有理数は循環少数

有理数は循環小数 見出しの証明。 有理数(ゆうりすう、英: rational number)とは、整数の比(英: ratio)として表すことができる実数のことである。分母・分子ともに整数の分数(分母≠0)として表すことができる実数との説明も...
数学とか

頭の体操四

可付番集合 可算集合とは N と濃度が等しい集合のことである。すなわち、集合 S が可算であるとは、自然数全体の集合 N との間に全単射が存在することをいう ウィキペディア 自然数との全単射性が認められる集合が可付番。 偶数は可付番 偶数2...